Impacts of Alternative Energy Production on Forests

AEHS 32nd Annual International Conference on Soils, Sediments, Water and Energy

October 19, 2016

Ellen Moyer, Ph.D., P.E., LEED Principal, Greenvironment, LLC

Outline of Presentation

- Green technology characteristics
- · How forests help us
- Status of forests
- The role of forests in our climate
- Alternative energy technology impacts on forests
 - Bioenergy
 - Hydropower
 - Wind
 - Solar
- Recommendations

Green Technology

- Green technology:
 - Gets the job done
 - Uses resources sustainably
 - Minimizes collateral damage
- Everything is interconnected in a web need to consider effects on:
 - Environment air, water, soil, climate, biodiversity, food
 - Human health
 - Economy
 - Society
- · Technologies are not intrinsically green
 - They need to be deployed in a green way

What Do Forests Do For Us?

- Carbon uptake and storage:
 - America's forests sequester and store 12% of total US greenhouse gas (GHG) emissions (Obama Clean Power Plan)
 - Few options for carbon storage: plants, soil, water
- Provide oxygen
- Clean air and water
- · Prevent soil erosion
- Wildlife habitat
- Flood storage, water conservation, and water cycle moderation
- Shade and temperature moderation
- · Wood, food, medicine
- Nature and wilderness for humans
- Many believe living things have an inherent right to exist
 - "Nature's Rights"
 - Aside from how they benefit humans

What Are Ecosystem Services?

- · Benefits people obtain from ecosystems
- United Nations Millennium Ecosystem Assessment categories:
 - Provisioning Services
 - Food, fresh water, fuel, fiber, and other goods
 - Regulating Services
 - · Climate, water, and disease regulation, as well as pollination
 - Supporting Services
 - · Soil formation and nutrient cycling
 - Cultural Services
 - Educational, aesthetic, and cultural heritage values
 - · Recreation and tourism

http://www.millenniumassessment.org/en/Index.aspx

EU-Commissioned Study of Economic Value of Forest Loss

- Led by a Deutsche Bank economist
- Estimated global financial loss of ecosystem services from forest loss
- Staggering <u>annual</u> cost of forest loss:
 ▶\$2 trillion to \$5 trillion
- For reference, the total annual U.S. federal budget:
 - ≥\$3.8 trillion

http://news.bbc.co.uk/2/hi/7662565.stm

Status of Forests

- There are 3 trillion trees on Earth
- We cut down 15 billion trees each year
- Earth has lost 46% of its trees since the onset of agriculture 12,000 years ago
- · Rapid deforestation occurring not just in rainforests
 - Temperate and boreal forests too
- 68% the world's flowering plants (many in forests) are now threatened or endangered – due to
 - Habitat loss and degradation
 - Invasive species

http://www.nature.com/news/global-count-reaches-3-trillion-trees-1.18287 https://www.researchgate.net/publication/281532511 Mapping tree density at a global scale http://www.huffingtonpost.ca/2014/09/05/canada-deforestation-worst-in-world n 5773142.html http://www.nytimes.com/2015/10/17/opinion/our-vanishing-flowers.html

Intact Forests Absorb and Store More Carbon

- Undisturbed, mature forests are carbon "sinks"
 - Continuing to absorb and store carbon from the atmosphere for 400 years or more
- Large, old trees absorb and store more carbon than small trees
 - One big tree can add as much carbon in a year as is contained in an entire mid-sized tree
- Unlogged northern hardwood forests absorb 39% to 118% more carbon than logged forests

https://www.uvm.edu/giee/pubpdfs/Keeton 2011 Forest Science.pdf
http://web.natur.cuni.cz/fyziol5/kfrserver/gztu/pdf/Luyssaert et al 2008.pdf
http://pubs.acs.org/doi/pdfplus/10.1021/es902647k
http://andrewsforest.oregonstate.edu/pubs/pdf/pub4835.pdf
http://www.uvm.edu/giee/pubpdfs/Nunery 2010 Forest Ecology and Manageme
nt.pdf

Intact Forests Absorb and Store More Carbon

- At least 50% of total ecosystem carbon is stored in soils
 - In intact northeastern U.S. forests
- Protecting high-biomass forests from logging avoids significant carbon emissions to the atmosphere
- Eliminating logging on U.S. public lands
 - Would increase carbon storage by 43% over current levels

http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12221/abstract http://www.pnas.org/content/106/28/11635.full.pdf http://naldc.nal.usda.gov/download/21039/PDF

Logging Reduces Carbon Storage

- Old forests that are logged and converted to young forests
 - Release large amounts of GHGs
 - Can take 200 years or more to recover original carbon storage capacity
- Only ~23% of carbon in logged trees ends up in longterm storage
 - Mostly incorporated into buildings or buried in landfills
- Wood products manufacturing discards 45% to 60% of original carbon in trees as waste
 - Rapidly decomposes or is burned

 $\frac{\text{http://andrewsforest.oregonstate.edu/pubs/pdf/pub1046.pdf}}{\text{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.6609\&rep=rep1\&type=pdf}}{\text{http://andrewsforest.oregonstate.edu/pubs/pdf/pub2101.pdf}}$

Logging Releases Carbon From Soil

- Logging a forest quickly releases ~30% of carbon stored in shallow forest floor soils to the atmosphere
- Deeper mineral soils gradually continue to release carbon after logging
 - May contribute to climate change over decades

http://soilslab.cfr.washington.edu/publications/Nave-etal-2010-SoilCarbon.pdf http://www.nrs.fs.fed.us/pubs/jrnl/2010/nrs 2010 johnson 001.pdf http://www.eurekalert.org/pub releases/2014-12/dc-ldf120214.php

Bioenergy

- Primary technologies:
 - Burning wood for electricity and/or heat (biomass)
 - Biofuels converting plants to liquid fuels
- Other minor technologies, such as
 - Burning methane from landfills and anaerobic digesters

Biofuels

- Primary biofuels:
 - Corn and cellulosic ethanol
 - Palm oil biodiesel
- Devastate forests and other lands
 - Inefficient process requires a lot of feedstock
 - Science: to replace 10% of US gasoline with ethanol and biodiesel would require 43% of U.S. cropland, plus lead to forest clearing for food corn in developing world
- More energy consumed to produce biofuels than biofuels contain
 - Takes more than a gallon of petroleum to make a gallon of ethanol
 - Ethanol contains less energy than petroleum

http://e360.yale.edu/feature/the case against biofuels probing ethanols hidden costs/2251/http://news.minnesota.publicradio.org/features/2005/03/21 steilm ethanolenergy/http://www.huffingtonpost.com/ellen-mover-phd/biomass-biofuel-biopower- b 8680774.html

Biomass Power Impacts

- Requires massive amounts of wood
 - Inefficient technology (~20-25% efficient)
 - Fueling 5 biomass plants considered in MA
 - Would have logged all western and central MA forests in 9-16 years
- Cutting and burning a forest for bioenergy creates a carbon "debt"
 - Debt is not offset by regrowth for 20 to 90 years or more
- Releases more carbon dioxide than coal
- Double-whammy damage to the climate
 - Logging and burning release carbon dioxide from forest soils and trees (and equipment)
 - Logging destroys trees that otherwise could have removed CO2 from the atmosphere

http://www.maforests.org/Impacts.htm

http://www.mass.gov/eea/docs/doer/renewables/biomass/manomet-biomass-report-full-lorez.pdf http://www.usnews.com/science/articles/2010/06/11/wood-power-worse-polluter-than-coal http://www.mass.gov/eea/docs/doer/renewables/biomass/manomet-biomass-report-full-lorez.pdf http://energv.gov/energvsaver/articles/wood-and-pellet-heating

http://www.marmingtonpost.com/enerr moyer pho/barming trees to make ele b 1001275.htt

Hydropower Examples

- Three Gorges Dam, China
 - Flooded 244 square miles
- Southeastern Anatolia Project, Turkey
 - Will flood 121 square miles
- Balbina Dam, Brazil
 - Flooded 1,208 square miles
- Many others...

Lester Brown et al. 2015. The Great Transition: Shifting from Fossil Fuels to Solar and Wind Energy http://news.nationalgeographic.com/energy/2015/07/150701-hydropower-dam-threatens-amazon-wildlife/

Plymouth, MA Solar Farms

- 15 solar farms approved or built since ~2010
- · 225 acres (total) of forested land cleared
- Rare Coastal Pine Barrens forests only found in southeastern MA, Long Island NY, and NJ
- Some sites developers mined and sold the sand and gravel first
- More lucrative to site solar on forest land

http://www.slate.com/articles/technology/future_tense/2016/06/ going_solar_isn_t_green_if_you_cut_down_tons_of_trees.html

Coastal Pine Barrens – Plymouth, MA

Solar in Shirley, MA

- · Clear cut 100 acres
- Clear cut 15-20 acres in Zone II of a public water supply – chemicals?
- Public land taken for industrial use
- Many other examples of forests destroyed for solar
 - Google "solar destroys forests"

Recommendations

- Preserving trees is a major answer to climate change (+ more)
- Conservation and efficiency top priority
 - Minimize the need for new energy generation
- Start valuing forests' many ecosystem services
- Crucial to preserve our trees for carbon removal and storage and other services
 - No commercial logging on public land
- Remaining old growth forest especially crucial to protect
- Switch to carbon-free energy quickly but carefully
 - Consider all the ramifications
- Carbon-free energy sited recklessly is not green energy
- Start using a green approach
 - We need to do more than one thing at a time energy and climate and land and forests and water and air and economy and ...

Recommendations

- Climate change says: stop burning things, tearing up the land, and destroying carbon sinks
 - Logging
 - Burning trees for energy
- Avoid massive hydropower projects
- Stop siting wind and solar projects on forest land
 - Forests as last resort, not first choice
- Site wind and solar on suitable sites

Energy Conservation and Efficiency First

- USDOE: "Energy efficiency is one of the easiest and most cost-effective ways to combat climate change."
- Efficiency is the cheapest electricity resource:
 - ~1/3 the cost of new electricity generation
- Huge opportunity
 - North Americans use twice as much energy as Europeans
- Other benefits besides climate:
 - Cleaner air
 - Improved competitiveness of businesses
 - Reduced energy costs

http://energy.gov/science-innovation/energy-efficiency

http://ma-eeac.org/wordpress/wp-content/uploads/1 Saving-Electricity

A-Summary-of-the-Performance-of-Electric-Efficiency-Programs-Funded-by-RatePayers.pdf

Plenty of Suitable Sites for Potential Wind and Solar

- Rooftops
- Highway rights-of-way
- Closed landfills, hazardous waste sites, and brownfield sites
- Closed coal plants
 - Example: Mount Tom, Holyoke, MA solar
- Farmland wind
- Offshore wind
- Challenge: suitable sites may be less profitable and more difficult for developers
 - As long as ecosystem services are not valued
 - As long as energy technology is not deployed in a green way

Thank You

Ellen Moyer, Ph.D., P.E., LEED Principal Greenvironment, LLC

ellenmoyer@em-green.com

http://www.ellen-moyer.com/

http://ellenmoyerphd.com/

http://www.huffingtonpost.com/author/ellenmoyer-450